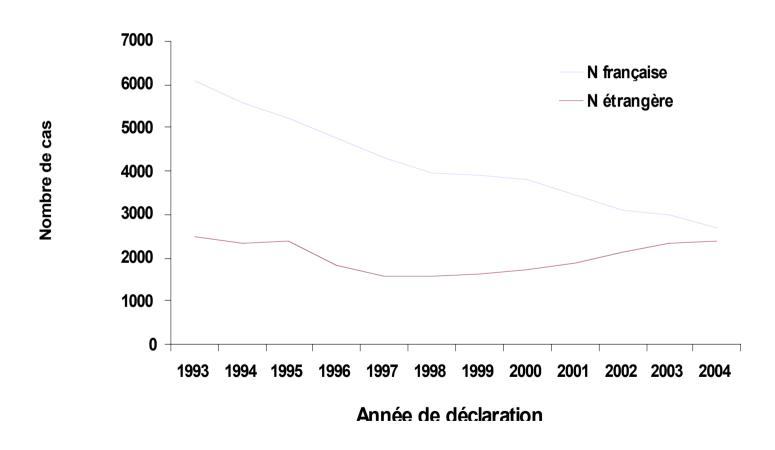
Colloque: « Performances et intérêt potentiel des nouveaux tests immunologiques in vitro dans le diagnostic de la tuberculose »


Organisé par le Centre National de Référence des Mycobactéries et de la Résistance aux Antituberculeux et le Service d'Immunologie Tissulaire et Cellulaire (Pitié Salpêtrière, IFR 113),

en collaboration avec le Département des maladies transmissibles de l'Institut de Veille Sanitaire (InVS)

Programme

- Tuberculose et populations D. Che (InVS)
- Besoins en matière de diagnostic de tuberculose
 - Tuberculose maladie N. Véziris (CNR)
 - Tuberculose infection C. Delacourt (Pédiatrie, CHIC)
- Bases rationnelles des tests immunologiques in vitro G. Carcelain (Immunologie cellulaire, CH UPMC)
- Méta-analyse des résultats clinicuqes (tuberculose malaide et tuberculose infection) – JL Herrmann (Bacteriologie, CHU R. Poincaré) et F Antoun (DASES, Paris)
- Questions auxquelles les études n'ont pas encore permis de répondre
 - En terme d'infection tuberculeuse E. Cambau (CNR)
 - En terme imunologiques G. Carcelain (Immunologie cellulaire, CH UPMC), D. Emilie (Immunologie, CHU A. Béclère)
- Conclusion et perspectives V. Jarlier (CNR)

Nombre de cas de tuberculose par nationalité France métropolitaine, 1993-2004

Les données de population

Immigrés originaires de pays avec incidence élevée (1999 – INSEE)

d'Afrique Sub-saharienne

- d'Asie

– d'Europe (hors UE)

Entrée long séjour

Professionnels de santé

Personnes traitées par anti-TNF

Personnes sans domicile fixe

Personnes en prison

 Personnes avec un infection à VIH (étude année 2000) ~ 400 000

~ 550 000

~ 570 000

~ 133 454 (2004 - ANAEM)

~ 250 000 infirmier(e)s, 210 000 AS, ...

(DREES)

~ 24 000 – 30 000 (2004 – Afssaps)

~ 86 000 (2001 - Insee)

~ 58 344 (01/2006 - Ministère justice)

~ prévalence en France 88 300

	Malade	Non Malade	
Test +	А	В	A+B
Test -	С	D	C+D
Total	A+C	B+D	A+B+C+D= N

Valeur prédictive

VPP: pourcentage de malades parmi les personnes trouvées positives par le test VPP = A/(A+B)

VPN : pourcentage de non malades parmi les personnes trouvées négatives par le test

$$VPN = D/(C+D)$$

$$VPP = \frac{p \text{ Se}}{p \text{ Se} + (1-p)(1-Sp)} \qquad VPN = \frac{(1-p) \text{ Sp}}{(1-p) \text{ Sp} + p (1-Se)}$$

14 décembre 2006

D. Che

Besoins pour le diagnostic de la tuberculose maladie

- 1. Accélérer le diagnostic
- 2. Améliorer le diagnostic de la tuberculose à culture négative
- 3. Consolider l'expertise médicale pour une maladie de moins en moins fréquente

1. Accélérer le diagnostic avant la culture

- Diagnostic clinique (Catanzaro, JAMA 2000) et diagnostic radiologiques (Balabanova, BMJ 2005 et Zellweger IJTLD 2006) pas suffisants pour affirmer la maladie
- Examen microscopique des prélèvements respiratoires positif (M+) dans environ 50 à 60% des cas à culture positive (20% chez les enfants).
- Dans les autres cas (M0), il faut attendre la culture...
- Déception pour les tests basés sur la détection par PCR car VPP insuffisante quand les prélèvements sont M0

Diagnostic clinique de la tuberculose pulmonaire

• Evaluation clinique de la probabilité de tuberculose (Catanzaro, JAMA 2000)

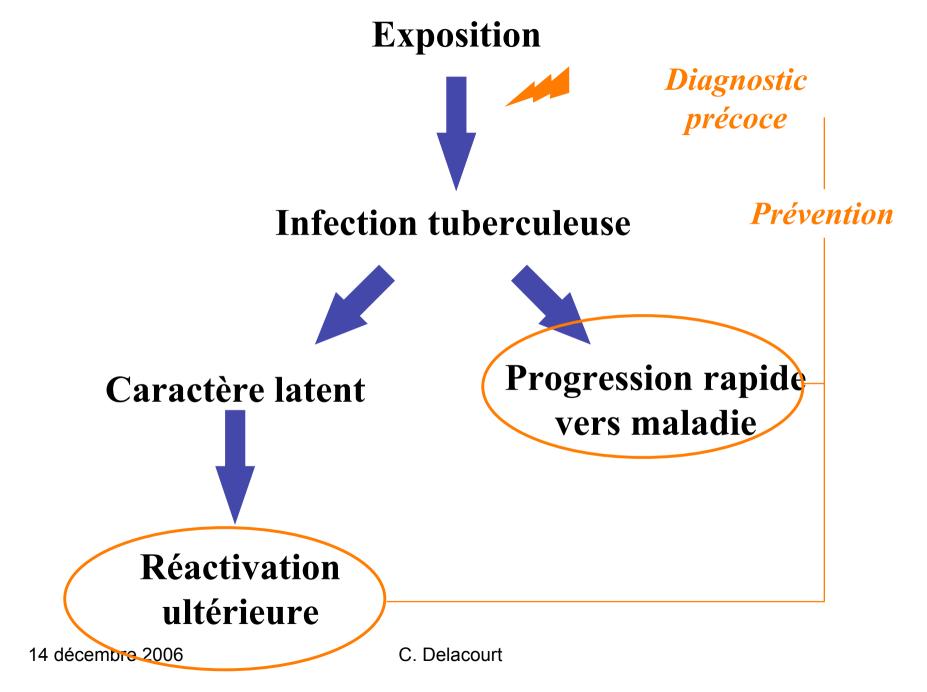
Probabilité clinique de tuberculose	N	N vrais malades					
Haute	46	40 (87%)					
Intermédiaire	68	20 (29%)					
Faible	224	12 (5%)					
⇒ Diagnostic clinique insuffisant							

14 décembre 2006

N. Véziris

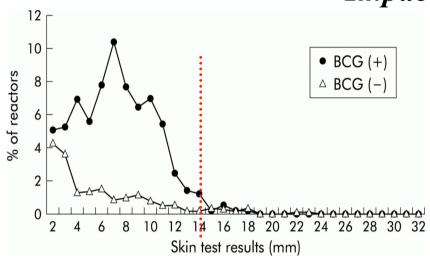
Apport des tests d'amplification génique pour le diagnostic de la tuberculose pulmonaire à examen microscopique négatif

Se = 72% Sp = 96%	Malade	Pas malade
Prévalence = 5%	5	95
PCR +	3,6 (5x0.72)	3,8 (95x0.04)
PCR -	1,4 (5x0.28)	91,2 (95x0.96)

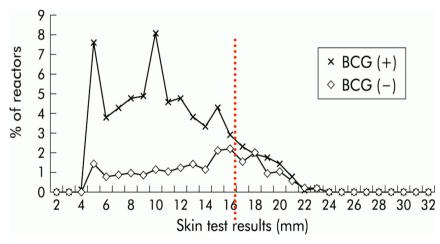

Tuberculose à culture négative

- 15 à 20% des tuberculoses pulmonaires ne sont pas confirmées bactériologiquement (Frieden Lancet 2003).
- Confirmation bactériologique du diagnostic dans 50% des cas de méningites (Cailhol IJTLD 2005, Hooker IJTLD 2003)
- Miliaire tuberculeuse (50 à 55% culture positive)
- 50% des pleurésies tuberculeuses sont à culture négative.

Impact de l'expertise hospitalière sur les performances diagnostiques de la tuberculose


	TB pou	issions	Р	
	0,2-3,3	3,4-9,9	>10	
N hôpitaux	7	7	2	
N patients	79	223	127	
Dg initial erroné	56%	58%	16%	<0.0001
Délai traitement > 7 jours	43%	35%	12%	<0.0001
Décès	23%	12%	6%	<0.0001

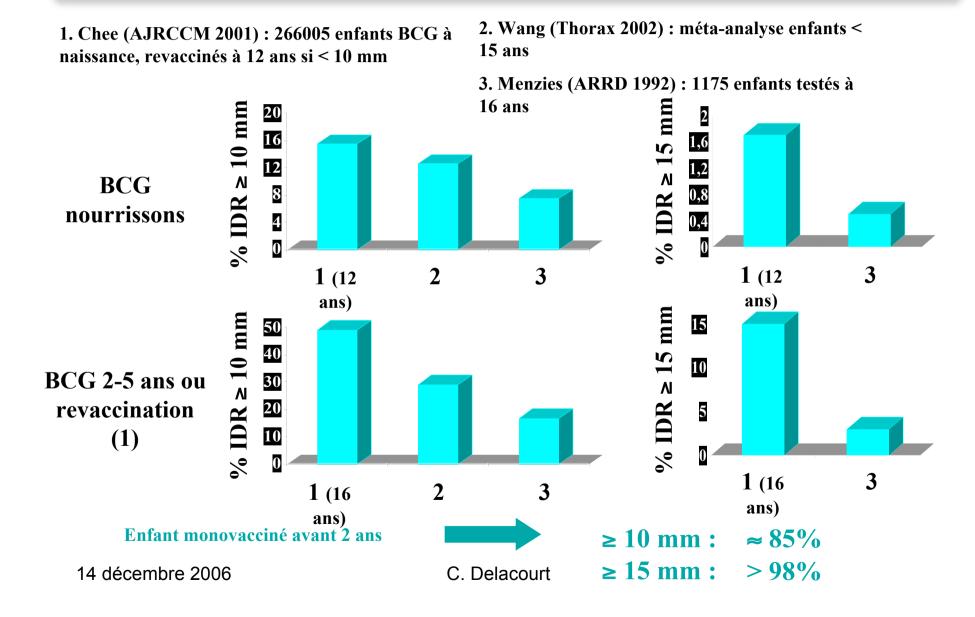
Greenaway, AJRCCM 2002



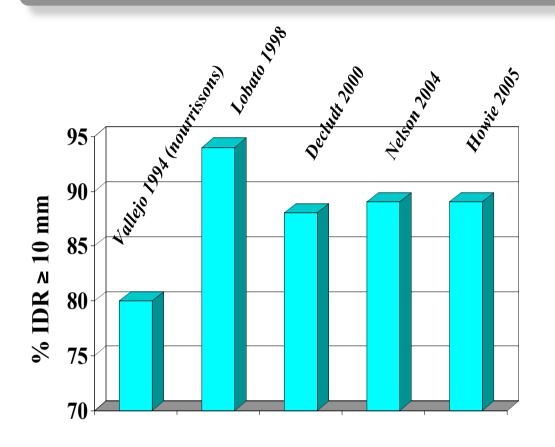
PERFORMANCES DIAGNOSTIQUES DE L'IDR

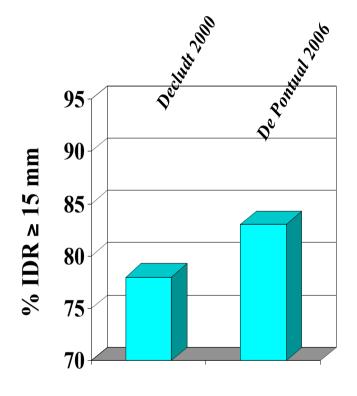
Impact du BCG

5 TU PPD 576 BCG + vs 1145 BCG -


2 TU RT 23 2880 BCG + vs 1425 BCG

14 décembre 2006


C. Delacourt


Wang et al Thorax 2002

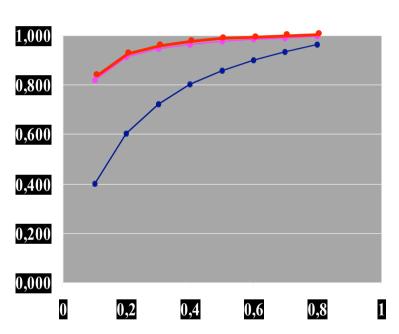
SPECIFICITE DE L'IDR CHEZ L'ENFANT

SENSIBILITE DE L'IDR CHEZ L'ENFANT

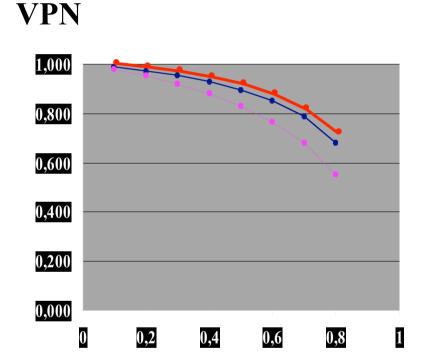
Tuberculose- maladie de l'enfant

≥ 15 mm : ≈ 80%

 $\geq 10 \text{ mm} : \approx 90\%$


14 décembre 2006

C. Delacourt

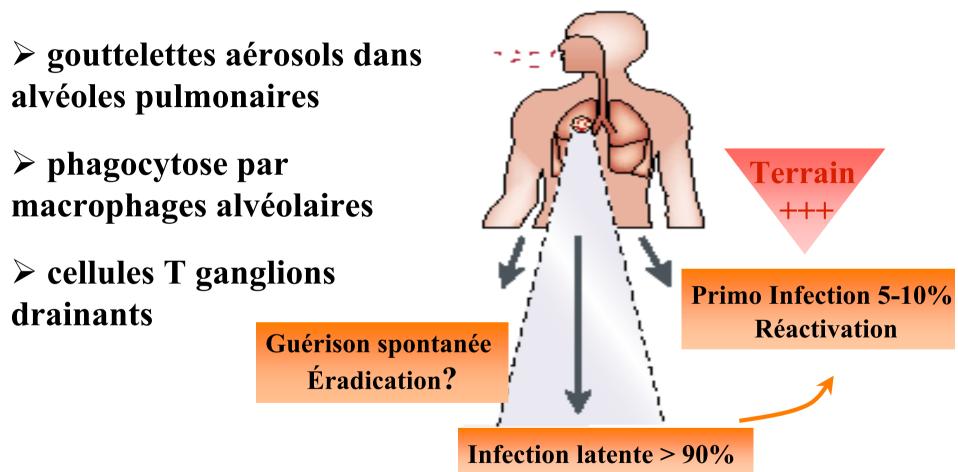

PERFORMANCES DIAGNOSTIQUES DE L'IDR

 \geq 10 mm (sp=0.85; se=0.90)

 $\geq 15 \text{ mm } (sp=0.98; se=0.80)$

Fréquence attendue de l'infection

VPP


Supprimer zone d'incertitude entre 10 et 15 mm Supprimer les aléas liés à la technique

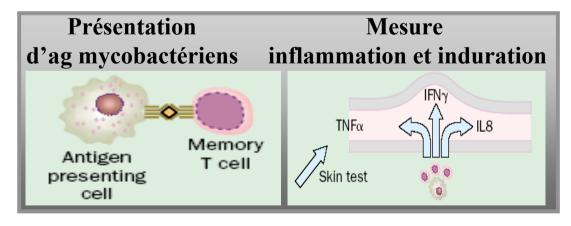
CONCLUSIONS

5 améliorations pour une démarche diagnostique optimale

- •Réponse positive précoce
- •Réponse à faible coefficient de variation
- •Test éliminant la zone d'incertitude 10-15 mm de l'IDR
- •Meilleure spécificité que l'IDR (vaccin tardif ou répété ++)
- •Différentiation infections anciennes et récentes

Formes cliniques = balance entre le pathogène et les réponses immunitaires de l'hôte

Diagnostic difficile : clinique, radiologie, bactériologique, IDR


Hypersensibilité retardée à la tuberculine

Réponse Mémoire aux antigènes mycobactériens

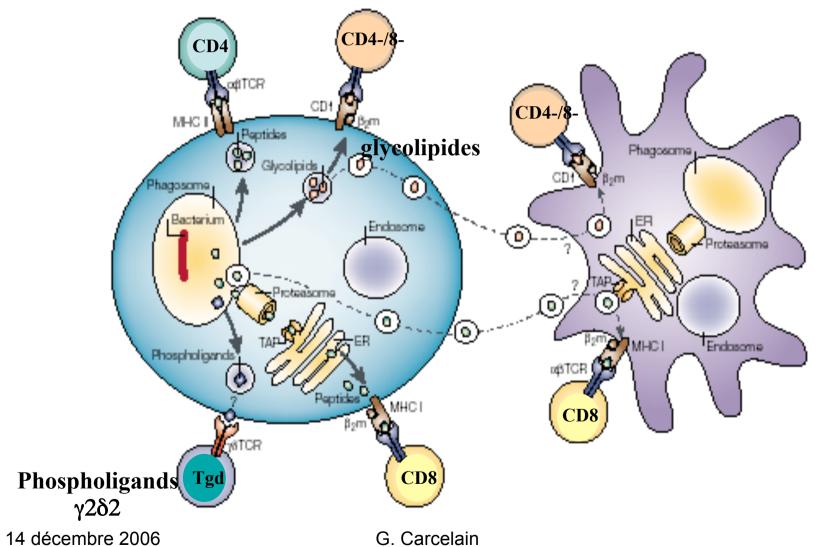
- > La Tuberculine : le plus vieux des antigènes mycobactérien
 - Koch's old tuberculine, 1891 concentré de culture inactivé par la chaleur
 - Tuberculine Purified Protein Derivative (PPD)

 concentré de culture en milieu sans protéines, soniqué, filtré, lots non standardis

 >200 ag partagés entre M tuberculosis, M Bovis, BGC, certaines M atyp
- ➤ IDR: non spécifique+++, peu sensible, peu reproductible (Enfants < 5 ans, immunodéprimés ...)

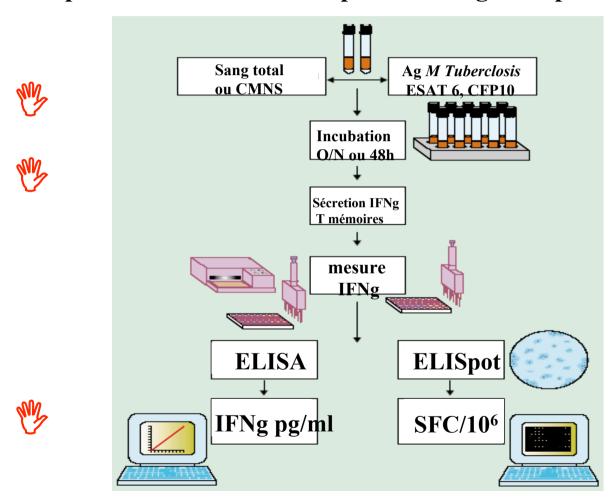
+: virage chez non vacciné, >15 mm ou phlycténulaire chez vacciné

G. Carcelain


Quels sont les acteurs immunitaires Mis en place contre le BK?

> Localisation intracellulaire :

- Protection contre les anticorps
- Enveloppe robuste, contribue à survie dans macrophage
- Pas d'éradication : persistance dans l'hôte, vecteur de la pathogénicité
- > Réponses immunes complexes encore mal décrites :
- faisant intervenir une grande variété de cellules T différentes
- Dirigées contre de nombreux antigènes

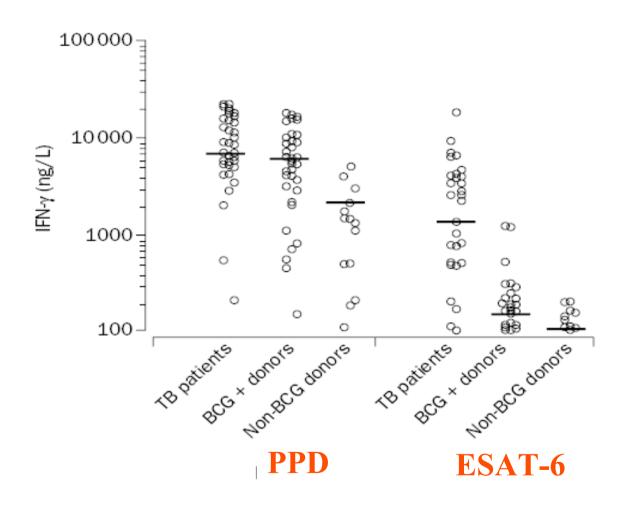

Activation de nombreuses variétés de cellules T

Macrophage infecté Cellule dendritique

Les nouveaux tests immunologiques de la tuberculose

Alternatives in vitro à l'IDR : mesure de l'IFNγ secrété par les cellules T en réponse à une stimulation par des antigènes spécifiques

Les nouveaux tests immunologiques de la tuberculose disponibles dans le commerce, approuvés par la FDA, marquage CE


Antigènes: ESAT-6, CFP10 (RD1), peptides

- > Quanti-FERON-TB Gold in-Tube (Cellestis Limited, Canergie, Australia)
- > T SPOT-TB (Oxford Immunotech, Oxford, UK)

⇒ Avantages par rapport à l'IDR :

- Pas de seconde visite, résultats en 16-24 heures
- Pas de stimulation in vivo des réponses immunes (effet « booster » IDR)
- Reproductibilité test et réactifs
- Résultat objectif
- Contrôle + : mitogène, met en évidence des faux nég = test ininterprétable
- Spécificité +++: populations BCG+, infectées par Mycobact atypiques

Spécificité: Antigène RD1 ESAT-6

Andersen et al. Lancet 2000

DIFFÉRENTS TESTS POUR LE DOSAGE DE L'INF γ

	Q	T-SPOT.TB® Immunotech			
Évolution des tests	1 ^{ère} génération 2 ^{ème} génération 3 ^{ème} génération		3 ^{ème} génération	1 ^{ère} génération	
Nom commercial	QF-TB®	QF-TB Gold®	QF-TB Gold InTube®	T-SPOT.TB®	
Technique	ELISA	ELISA	ELISA	ELISPOT	
Test réalisé sur	Sang complet	Sang complet	Sang complet	Cellules mononuclées circulantes	
Antigènes	PPD	ESAT-6 CFP10	ESAT6 CFP10 Tub 7.7	ESAT-6 CFP10	
Nature des antigènes	Protéines	Peptides	Peptides	Peptides	
Contrôle positif	РНА	РНА	РНА	РНА	
Contrôle négatif	PPD B / sérum φ	Nil	Nil	Nil	
Résultats obtenus	16-24h	16-24h	16-24h	16-24h	

AVANTAGES ET INCONVENIENTS

- Pas de seconde consultation pour interpréter le résultat
- Différencie infection à *M. tuberculosis* d'une vaccination ou d'une infection à mycobactéries atypiques
- Validité chez le sujet VIH+ si ajustement de la population lymphocytaire.
- Mais
 - Différence technique :
 - Concentration de PHA : Notion de tests indéterminés
 - Meilleure mise en évidence d'une immunodépression (sujet à risque)
 ?
 - Cinétique d'évolution des marqueurs
 - Établissement du seuil de positivité:
 - nombre de spots pour T-SPOT.TB
 - 0.35 vs 0,7 pour le QFT-G in Tube
 - Ne différencie pas tuberculose-infection de tuberculose-maladie

RECOMMANDATIONS ETRANGERES

SUISSE

- Confirmation par un test T-IFN γ des IDR positives
- Utilisation d'emblée d'un test T-IFN γ chez les sujets immunodéprimés
- Mêmes indications que l'IDR

UK

- Si l'IDR est positive : test cellulaire T-IFN γ
- Si test non concluant : médecin spécialisé

USA

- Seul le QF-TB Gold est approuvé par la FDA
- Remplace selon les mêmes indications l'IDR

TESTS INTERFÉRON GAMMA – SENSIBILITÉ (1)

PAYS	Population	Age	Nombre	BCG	Sensibilité %	TESTS
JAPON	Tuberculose Maladie	54	118	+	89 vs 65.8	QFT Gold vs IDR > 5 mm
Mori	Sujets sains	20	216	+		QFT Gold vs IDR > 10 mm
ALLEMAGNE	Tuberculose Maladie	F4	72	10+	97.2 vs 89	TSPOT TB vs IDR > 5mm
Meier	Sujets sains	51	12	29-		ТЅРОТ ТВ
				45 ?		
	Tuberculose Maladie Enfants	4,2	133		83 vs 63	si IDR > 15 mm
		,			vs 65	si IDR > 10 mm
AFRIQUE					vs 66	si IDR > 5 mm
SUD Liebeschuetz	a) groupe VIH			+	a) 73 vs 36	ELISPOT (ESAT-6 et/ou CFP10) vs IDR >15 mm
	b) groupe Malnutrition				b) 78 vs 44	ELISPOT (ESAT-6 et/ou CFP10) vs IDR > 5 mm si VIH +
	c) groupe âge < 3 ans				c) 85 vs 51	
	Tuberculose Maladie		47		96	ESAT-6
ROYAUME	Sujets sains		47	36/47 +		ESAT-6
UNI <i>Lalvani</i>	Tuberculose Maladie		26		69	IDR Heaf 2 (> 5 mm)

14 décembre 2006

F. Antoun et JL Herrmann

TESTS INTERFÉRON GAMMA – SENSIBILITÉ (2)

PAYS	Population	Age	Nombre		BCG	Sensibilité %	TESTS
	Tuberculose Maladie	33	50	(78% VIH +)		90	
ZAMBIE	i uberculose maiadie	32	50	(22% VIH -)		100	ELISPOT (ESAT-6 et/ou CFP10)
Chapman	Sujets sains (inf.endémique)		54	54 VIH -		69	
ROYAUME UNI Lalvani	Sujets sains	32		40	33/40 +		ESAT-6 et/ou CFP-10
	Tuberculose Maladie	33	50	(12 % VIH +)		80	ESAT-6
INDE (Bombay)	Sujets sains (inf.endémique)	47	,	100		56	ESAT-6
Lalvani						76	CFP-10
						80	ESAT-6 et/ou CFP-10

TESTS INTERFÉRON GAMMA – SENSIBILITÉ (3)

PAYS	Population	Age	Nombre		BCG	Sensibilité %	TESTS
ITALIE	Tuberculose Maladie		29	(30% VIH +)		93.1	ELISPOT (ESAT-6 et/ou CFP-10)
Scarpellini	Sujets sains		32	(54 % VIH +)			ELISPOT (ESAT-6 et/ou CFP-10)
ITALIE Ferrara	Tuberculose maladie	43	24			70 vs 83 vs 58	QUANTIFERON TB GOLD in tube vs TSPOT TB vs IDR >5 mm
COREE SUD	Tuberculose maladie	43	54		30/54	81 vs 78	QUANTIFERON TB GOLD in tube vs IDR >10 mm
Kang	Sujet sains	25		99	93/99		
COREE SUD Lee	Tuberculose maladie	48		87	45/87	70 vs 96,6 vs 66,7	QFT G vs TSPOT vs IDR >10mm
	Sujets sains (Inc 63/105)	15		131	131/131		QFT G vs TSPOT vs IDR

SYNTHESE - SENSIBILITE DES TESTS T-IFNY

- Évaluation uniquement dans la tuberculose maladie
- QF-TB-Gold (48-118 patients): 81 à 89%
- T-SPOT.TB: (47-72 patients): 83 à 100%
- Pourquoi n'obtient-on pas 100% :
 - Origine géographique et ethnique des populations testées
 - Sévérité de la maladie
 - Notion de compartimentalisation de la réponse T
 - Notion de sidération de la réponse T

TESTS INTERFÉRON GAMMA – SPÉCIFICITÉ (1)

PAYS	Population	Age	Nombre	BCG	Spécificité %	TESTS
JAPON	Tuberculose Maladie	54	118	÷		QFT Gold vs IDR > 5 mm
Mori	Sujets sains	20	216	+	98 vs 35	QFT Gold vs IDR > 10 mm
ALLEMAGNE	Tuberculose Maladie	51	72	10+		TSPOT TB vs IDR > 5mm
M eier	Sujets sains	91	12	29-	92	TSPOT TB
				45 ?		
	Tuberculose Maladie Enfants	4,2	133			si IDR > 15 mm
						si IDR > 10 mm
AFRIQUE SUD				+		si IDR > 5 mm
Liebeschuetz	a) groupe VIH					ELISPOT vs IDR >15 mm
	b) groupe Malnutrition					ELISPOT vs IDR > 5 mm si VIH +
	c) groupe âge < 3 ans					
	Tuberculose Maladie		47			ESAT-6
ROYAUME UNI	Sujets sains		47	36/47 +	92	ESAT-6
Lalvani	Tuberculose Maladie	İ	26			IDR Heaf 2 (> 5 mm)
	Contacts		26			ESAT-6

TESTS INTERFÉRON GAMMA – SPÉCIFICITÉ (2)

PAYS	Population	Age	Nombre	BCG	Spécificité %	TESTS
ZAMBIE	Tuberculose Maladie	33	(78% VIH +)			ELISPOT (ESAT-6 et/ou CFP10)
Chapman		32	(22% VIH -)			, , , , , , , , , , , , , , , , , , ,
	Sujets sains (inf.endémique)		54 VIH -		69	ESAT-6 et/ou CFP10
ROYAUMEUNI	Sujets sains	32	40	33/40 +	100	ESAT-6 et/ou CFP-10
NDE	Tuberculose Maladie	33	50 (12 %VH +)			ESAT-6
(Bombay)	Sujets sains (inf.endémique)	47	100		56	ESAT-6
Lalvani					76	CFP-10
					80	ESAT-6 et/ou CFP-10

TESTS INTERFÉRON GAMMA – SPÉCIFICITÉ (3)

PAYS	Population	Age	Nombre		BCG	Spécificité %	TESTS
ITALIE	Tuberculose Maladie		29	(30%VH +)			ELISPOT (ESAT-6 et/ou CFP-10)
Scarpellini	Sujets sains		32	(54%VIH +)		87.5	ELISPOT (ESAT-6 et/ou CFP-10)
COREE du SUD	Tuberculose maladie	43		54	30/54		QUANTIFERON TB GOLD in tube vs IDR >10 mm
Kang	Sujet sains	25		99	93/99	96 vs 49	· IVIIIII
ITALIE Ferrara	Tuberculose maladie	43		24			QUANTIFERON TB GOLD in tube vs TSPOT TB vs DR>5 mm
CORREE du SUD	Tuberculose maladie	48		87		51,70%	QFT GvsTSPOT vs IDR >10 mm
Lee	Sujet sains (Inc. 63/10 ⁵)	15		131	100	91,6 vs 84,7	QFT GvsTSPOT

SPÉCIFICITÉ DES TESTS T-IFNY

- Évaluées chez des sujets témoins sans facteur de risque d'infection à M. tuberculosis
- QF-TB-Gold (39 à 216 sujets) : 96 à 100%
- T-SPOT.TB (40 à 115 sujets) : 87.5 à 100%
- A exclure du débat les valeurs observées dans les :
 - Populations à forte endémie tuberculeuse
 - 60-80% des témoins testés avaient un test positif
 - 40% des personnels soignants avaient un test positif
- Cas Particuliers:
 - Population contrôle ou dites sujets sains :
 - facteurs de risque de contage tuberculeux chez témoins présentant un test T-IFN
 γ positif
 - Témoins présentant une mycobactériose à M. kansasii

APPLICATIONS

Objectif 1

Dépister une TIL dans certains groupes à risque dans le but de la traiter :

- enquête autour d'un cas
- migrants dans pays à faible incidence
- personnel soignant

Résultats:

Tests IFN_γ mieux corrélés au niveau du risque Corrélation tests IFN_γ – IDR 60 à 85 % d'autant plus que :

Population non vaccinée Niveau de risque élevé Cutt off IDR ≥ 10 mm Contacts non I- déprimés

PLACE DANS LE DIAGNOSTIC DE LA TUBERCULOSE MALADIE ?

- Sensibilité équivalente dans les formes pulmonaires et extrapulmonaires (Ravn, 2005)
- Rôle diagnostique dans les formes paucibacillaires ou non documentées
 - Chez l'enfant (en cours d'évaluation)
- MAIS : ne différencie pas TB-infection de TB-maladie : présence de signes cliniques associés
- Importance de la cinétique de la réponse
- Importance de la notion de seuil
- Autres marqueurs associés ?

INTERPRETATION

	IDR	IFNγ
Vaccinés BCG ou M. atypiques	Positif	Négatif
Contage <i>M</i> . tuberculosis	Positif	Positif

- 1. Pas de corrélation entre la production d'IFNy et la protection
- 2. Aucune relation entre la réponse et l'efficacité vaccinale
- 3. Ne différencie pas un sujet sensible d'un sujet résistant
- 4. Ne différencie pas infection de maladie

INDICATIONS DES TESTS T-IFN γ (1)

- Populations à faible endémie tuberculeuse (pays industrialisés), Enquête autour d'un cas
 - Surtout si population vaccinée,
 - Absence de réaction croisée avec MNT
 - Meilleur dépistage des tuberculose-infections
- Populations à haut risque d'être infectées
 - Migrants : les enfants, +/- les jeunes adultes
- Populations infectées à risque de développer une maladie
 - Immunodéprimés (VIH)
 - Patients sous traitement immunosuppresseur (anti-TNFα ...)
 - Enfants dans un contexte à risque d'infection

Les espoirs pour avoir mieux que l'IDR

- avoir un test en un seul temps :
 - Plus rapide : pas vraiment car prélèvement au labo et résultat 24 à 48h après en fonction des possibilités biologiques
 - Positivité plus précoce par rapport au contage ?
- avoir un test plus spécifique : OUİ
 - par rapport à la vaccination BCG
 - par rapport aux mycobactérioses => éventuels faux positifs dans les infections à *M. kansasii, M. marinum, M. szulgai* qui représentent environ 200 cas par an en France
- avoir un test prédictif pour la chimiothérapie prophylactique : ssi indications pertinentes
- avoir un test positif quand l'IDR est négative ?

Quand faire ces tests? (indications)

- T.SpotTB et Quantiféron Gold = IDR in vitro sans influence du BCG
- Remplacer l'IDR?
 - ⇒ Suivre les recommandations IDR : CSHPF 2003, SPLF 2004, ATS 2000, CDC 2003, IUATLD, OMS
 - Tests limités à :
 - sujets exposés
 - Maladie sous-jacente (VIH, diabète, immunosupresseurs) à risque de progression vers la maladie
 - Pas chez personnes tout venant
 - Diagnostic d'une tuberculose maladie? extra-pulmonaire?
- Test complémentaire de l'IDR? Pour quelle indication et population?

Etudes à faire dans chacune des populations choisies

⇒Études médico-économiques, en particulier dans les indications du sujet sain exposé (enquêtes autour d'un cas et personnel exposé)

⇒Etude de prédictivité de tuberculose : devenir des patients avec tests + et des patients avec tests –

Quand faire ces tests? (indications) Diagnostic d'une tuberculose maladie

- Tuberculose grave
 - Disséminée
 - Méningite (80 cas en 2004)
 - Miliaire
 - Uvéite,...
 - Extrapulmonaire (1500 cas en 2004).

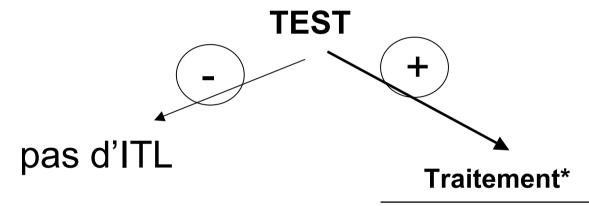
Ces formes sont souvent bactériologie-négative (paucibacillaires) et IDR-négative (production d'IFNγ probablement faible)

⇒ Pas d'étude spécifique ou quelques sujets dans études non dédiées

Ces nouveaux tests sont ils un espoir pour les tuberculoses avec IDR négative?

Faux négatifs de l'IDR

- lié au test lui-même : lot, injection, lecture, effet de boost in vivo
 - => ces faux négatifs vont disparaître avec les tests in vitro
- lié à l'hôte
 - immuno dépression, rougeole, vaccins...
 - Classiquement, l'IDR est négative dans les formes graves disséminées (miliaire et méningite)
 - => Ces faux négatifs seront a priori les mêmes avec les tests in vitro car même base immunologique


Synthèse des études à faire

- Court terme :
 - Cas de tuberculose disséminée et extra-pulmonaires
 - Cas dans épidémie de souches Beijing (ex-URSS, MDR en Allemagne)
 - Cas MDR
- Moyen terme:
 - Contacts de tuberculose en différenciant M+ et M0
 - Etudes médico-économiques par rapport à IDR
 - Études de gestion (transfert financier des services médicaux vers les laboratoires?)
- Long terme : Études d'efficacité de la stratégie « dépistagetraitement » avec suivi (apparition de cas de tuberculose) de cohortes
 - test + et IDR + traités
 - test et IDR- non traités

Conséquences d'un test + = IDR+?

AVANT de faire le test

- Décision de faire le test suivant les recommandations
- Décision thérapeutique en cas de test +

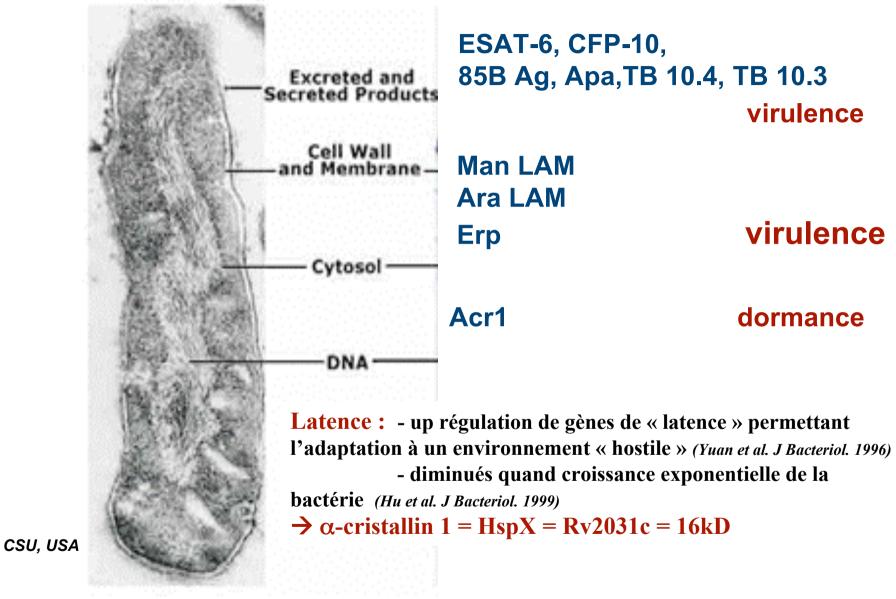
L' indication adéquate de faire le test comprend la prise de décision thérapeutique avant le test au cas où le résultat serait +

Isoniazide seul 9 mois
Rifampicine + 3 mois
isoniazide

SPLF 2004, CSHPF 2003, CDC 2003

*Après exclusion de la tuberculose maladie

Juste prescription


- Indications strictement respectées des TST (avoir pris la décision ttt avant de faire le test)
- Indicateur de juste prescription
 - Nombre de test par patient
 - Nombre de traitements (H ou HR) donnés par test positif
 - Nombre de test par indication
- Étude médico-économique test in vivo vs. test in vitro
- Raisonnable de limiter les tests
 - dans le cadre de protocoles avec fiche de recueil
 - Laboratoires experts avec contrôles de qualité
 - Hors nomenclature

Limites « immunologiques » des tests

- Effet du traitement ?
- durée de détection de ces réponses ?
- Aspect quantitatif des réponses ?
- souches n'induisant pas d'IFN-γ
- infection latente
- sensibilité des tests chez ID en particulier, RI
- Doser d'autres cytokines? Des marqueurs d'activation?
- Nécessité d'améliorer les ag cibles pour le dg des formes latentes →inclusion dans tests ag latences?
- Nécessité d'améliorer la sensibilité des tests?

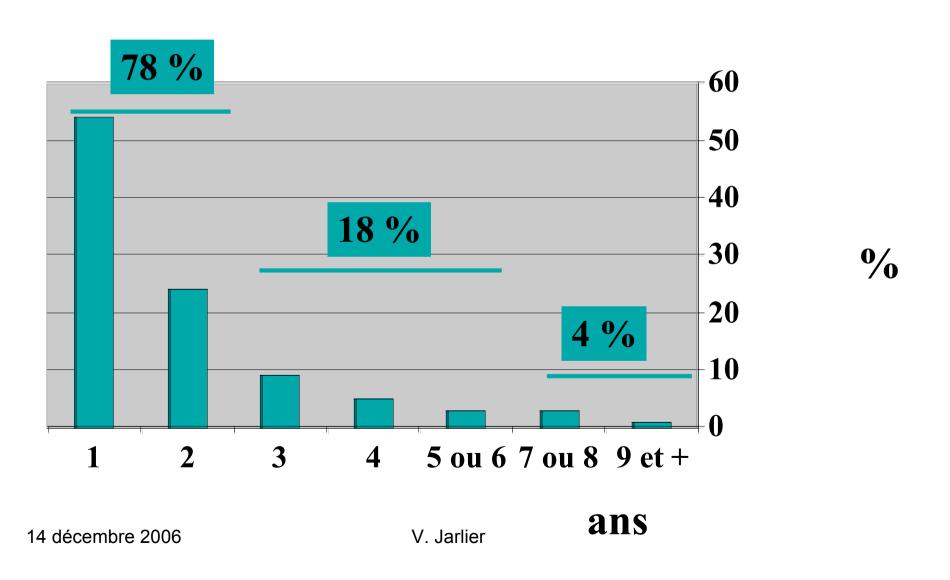
Augmenter le panel des antigènes *MT* Autres techniques (prolifération, ICS ...)

Les Antigènes de M. tuberculosis

14 décembre 2006

G. Carcelain

Pourcentage d'infectés et de tuberculoses maladies parmi les contacts âgés de 0 à 14 ans selon le degré de positivité de la source de contagion

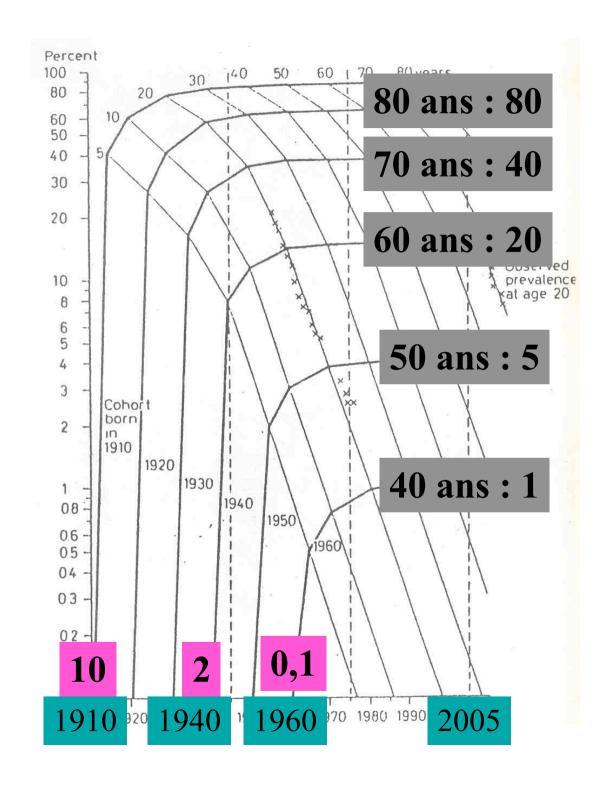

Source de contagion	infectés		malades/ infectés		Risque* nulé
	%	RR	%	RR	
M+ C+	34	4-5	38	4	16-20
Mo C+	11	1	18	2	2
Мо Со	7	1	10	1	1

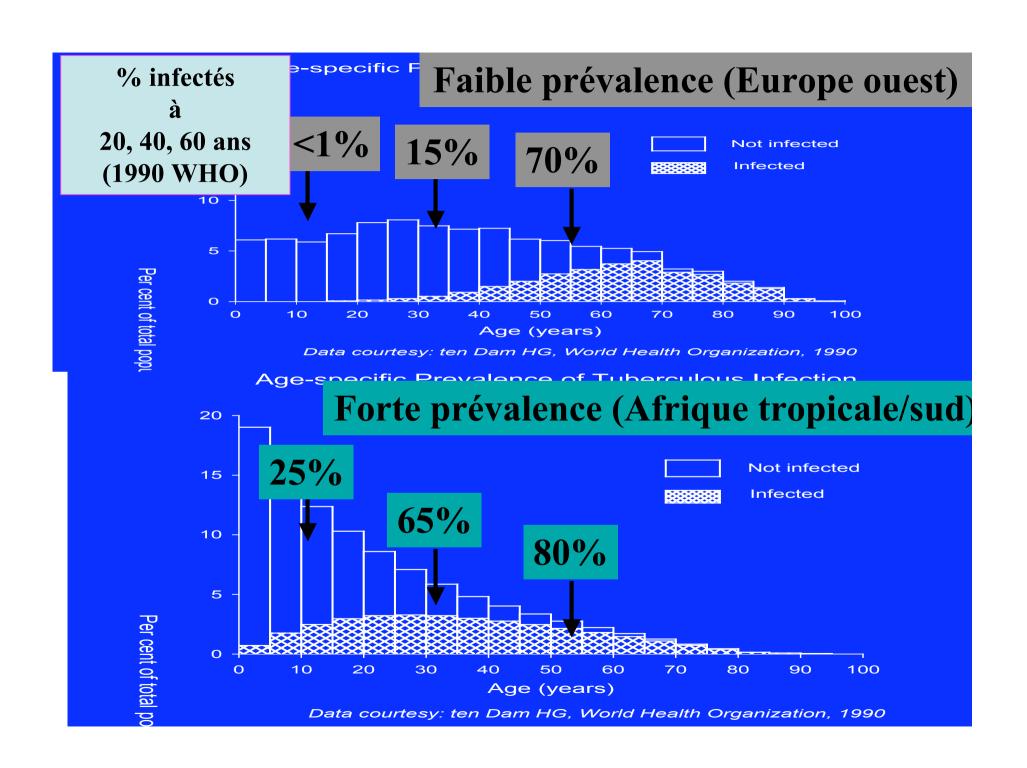
^{*} ou index de contagion. (Grzybowski, Barnett, Styblo. Bull. IUAT 1975 ; 50 : 87-104)

Distribution des cas de tuberculose dans les pays industrialisés et leur rôle respectif dans la transmission

Cas de t	tuberculose proportion	Index de contagion	Rôle estimé dans la transmission
M+ C+	1/3	20	87 %
Mo C+	1/3	2	9 %
Мо Со	1/3	1	4 %

Distribution du délai (ans) de survenue de la tuberculose maladie après l'infection


Prévalence estimée de la tuberculose infection en 1945, 1975 et <u>2005</u> aux <u>Pays bas</u> chez les personnes Nées entre 1910 et 1960 (Styblo)


% infectés en 2005 dans chaque cohorte d'âge

Taux annuel d'infection (%) une année donnée

Année de naissance

14 décembre 2006

Efficacité du traitement de la tuberculose infection pour empêcher le passage à la tuberculose maladie

- INH 12 mois : 25 à 92 (compliance 90 %)
- INH « 3-6-12 » :
 - -21% 3 mois, 65% 6 mois, 75% 12 mois
 - compliance : 31%, 69%, 93%
- INH-RIF 3 mois HIV -: 41 % (48 % INH 6 mois)

ATS 2000

Conclusions

- Toute méthode capable d'affirmer sans ambiguïté l'infection tuberculeuse est bienvenue
- Bénéfice : enfant contact d'un cas contagieux lorsque la prise de décision thérapeutique n'est pas automatique (5-15 ans ?) (n.b. ce n'est pas une ITL)
- 3. Bénéfice : Immunodéprimmés sévères infectés, quand il est possible de traiter efficacement
- 4. Bénéfice potentiel : adulte IC contact d'un cas contagieux si l'infection est toute récente (n.b. ce n'est pas une ITL)

Reste à démontrer le rendement et l'efficacité de l'approche (en ITT)

- recherche des personnes potentiellement « bénéficiaires »
 (ex. % d'enquête autour cas faites)
- 2. assignation des personnes dans groupes « bénéficiaires »
- 3. Application de la méthode
- 4. Résultat positif
- 5. Mise au traitement
- 6. Poursuite du traitement
- 7. Succès final du traitement

Si mise en place de la méthode

- 1. Évaluer le nombre de cas « bénéficiaire »
- 2. Evaluer le coût financier
- 3. Ré-organiser le système de soins en fonction
- **4.** <u>Créer</u> les moyens financiers et humains (si méthode s'ajoute à l'arsenal actuel)
- **Transférer** les moyens financiers et humains (si méthode remplace une méthode actuelle) : ex. méthode X biologique remplace méthode Y « clinique », transférer les moyens des services cliniques vers les laboratoires (pôles