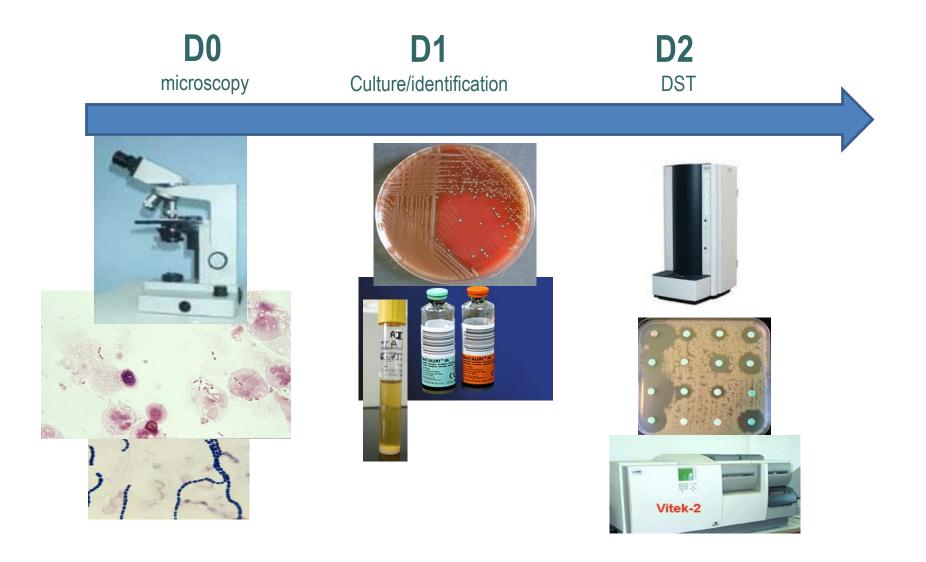


New diagnostic methods for mycobacteria : the pros and cons

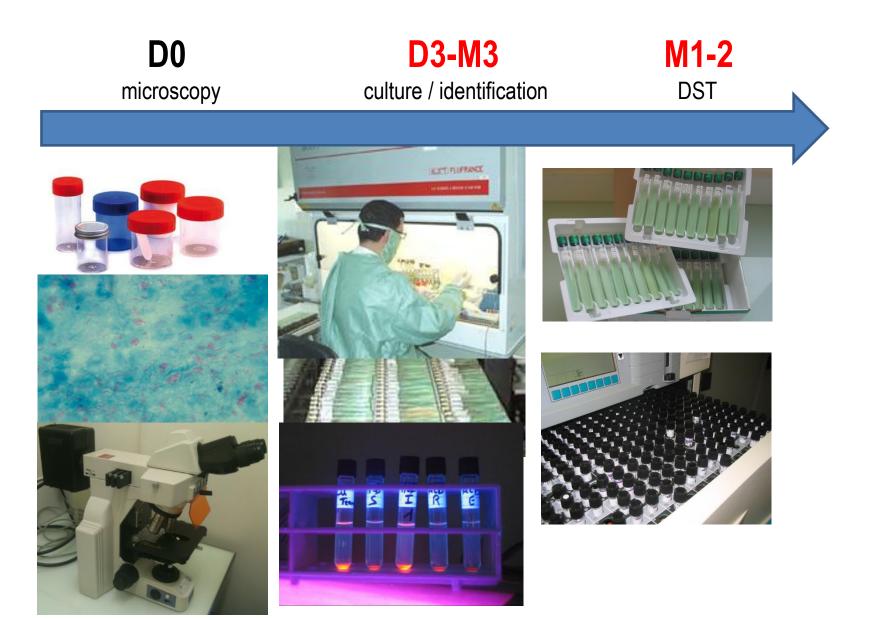
Pr Nicolas Veziris

CNR des Mycobactéries, Département de Bactériologie,

Hôpitaux Universitaires de l'Est Parisien, APHP


CiMi, INSERM, Sorbonne Université

Conflicts of interest


- Janssen
- Otsuka
- Becton Dickinson

Diagnosis of tuberculous disease

Usual bacteriological diagnosis

Tuberculosis bacteriological diagnosis

Polymerase chain reaction

• Karry Mullis 1983

- Amplifies the number of copies of nucleic acids in order to allow thier detection
- Theorically allows detection of 1 DNA molecule
- Great hope for a fast diagnosis of tuberculosis from samples

PCR performances for the diagnosis of tuberculosis

Tuberculosis	Sensitivity	Specificity	Prevalence	PPV	NPV
Smear +	98%	98%	85%	98%	90%
Smear -	72%	96%	5% ^a	?	?
			2% ^b	?	?
Extra- respiratory (smear-)	30%	98%	0.5%	?	?

a : respiratory and ID ward, b : other wards

Sarmiento, JCM 2003

PCR performances for the diagnosis of smear negative tuberculosis

Se = 72% Sp = 96%	Culture +	Culture -	What can be done?
Prevalence = 5%	5	95	
PCR +	3.6	3.8	PPV = 3.6/(3.6+3.8)
	(5x0.72)	(95x0.04)	= 49%
PCR -	1.4	91.2	NPV = 91.2/(91.2+1.4)
	(5x0.28)	(95x0.96)	= 98%

PCR : evolution of performances

Reference	Methodology	Technology	Sensitivity among smear negative pulmonary specimens
Sarmiento, JCM 2003	Meta-analysis	many	72%

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 9, 2010

VOL. 363 NO. 11

Rapid Molecular Detection of Tuberculosis and Rifampin Resistance

Catharina C. Boehme, M.D., Pamela Nabeta, M.D., Doris Hillemann, Ph.D., Mark P. Nicol, Ph.D., Shubhada Shenai, Ph.D., Fiorella Krapp, M.D., Jenny Allen, B.Tech., Rasim Tahirli, M.D., Robert Blakemore, B.S., Roxana Rustomjee, M.D., Ph.D., Ana Milovic, M.S., Martin Jones, Ph.D., Sean M. O'Brien, Ph.D., David H. Persing, M.D., Ph.D., Sabine Ruesch-Gerdes, M.D., Eduardo Gotuzzo, M.D., Camilla Rodrigues, M.D., David Alland, M.D., and Mark D. Perkins, M.D.

« At sites peforming alternatives nucleic acid-amplification testing, the sensitivity of the MTB/RIF test performed diectly on sputum was higher than that of Amplicor and similar to that of ProbeTec »

PCR : evolution of performances

Reference	Methodology	Technology	Sensitivity among smear negative pulmonary specimens
Sarmiento, JCM 2003	Meta-analysis	many	72%
Boehme, NEJM 2010	Prospective study	Xpert MTB/RIF	72%
Steingart, Cochrane 2014	Meta-analysis	Xpert MTB/RIF	67%

Xpert MTB/RIF Ultra for detection of *Mycobacterium tuberculosis* and rifampicin resistance: a prospective multicentre diagnostic accuracy study

Susan E Dorman^{*}, Samuel G Schumacher^{*}, David Alland, Pamela Nabeta, Derek T Armstrong, Bonnie King, Sandra L Hall, Soumitesh Chakravorty, Daniela M Cirillo, Nestani Tukvadze, Nino Bablishvili, Wendy Stevens, Lesley Scott, Camilla Rodrigues, Mubin I Kazi, Moses Joloba, Lydia Nakiyingi, Mark P Nicol, Yonas Ghebrekristos, Irene Anyango, Wilfred Murithi, Reynaldo Dietze, Renata Lyrio Peres, Alena Skrahina, Vera Auchynka, Kamal Kishore Chopra, Mahmud Hanif, Xin Liu, Xing Yuan, Catharina C Boehme, Jerrold J Ellner, Claudia M Denkinger, on behalf of the study team[†]

Lancet Infect Dis 2017

« For tuberculosis case detection, sensitivity of Xpert Ultra was superior to that of Xpert in patients with paucibacillary disease »

PCR : evolution of performances

Reference	Methodology	Technology	Sensitivity among smear negative pulmonary specimens
Sarmiento, JCM 2003	Meta-analysis	many	72%
Boehme, NEJM 2010	Prospective study	Xpert MTB/RIF	72%
Steingart, Cochrane 2014	Meta-analysis	Xpert MTB/RIF	67%
Dorman, LID 2018	Prospective study	Xpert Ultra	63%
		Xpert MTB/RIF	46%

Beware of announcement!

Xpert MTB/RIF : real life

- Lee, AJRCCM 2019 : diagnostic performances of Xpert MTB/RIF
- Korea (TB incidence 77/10⁵)
- Consecutive sputum samples collected from 2,952 suspected pulmonary tuberculosis patients over a 3-year period
 - "Xpert provides faster, more stable, and superior results compared with smear microscopy, in addition to its strong correlation with smear grade. Xpert might replace smear microscopy as the first-line diagnostic test for pulmonary tuberculosis in routine clinical practice in an intermediate-burden setting"

	Heterogeneity		Diagnostic Perfor	mance (95% CI)	
Assay	Factor	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
Xpert MTB/RIF	Smear-positive Smear-negative	96.1 (90.3–98.9) 60.2 (52.3–67.9) P < 0.0001	92.2 (84.6–96.8) 97.7 (97.1–98.3) <i>P</i> = 0.0009	93.3 (87.3–96.6) 62.2 (55.4–68.5) P < 0.0001	95.4 (88.8–98.2) 97.5 (97.0–98.0) n.s.

PPV limited for tuberculosis

PPV : Ultra?

• Dorman, LID 2018 : Ultra vs MTB/RIF

	Sensitivity		Specificity		
	All culture-positive	Smear-negative, culture-positive	All culture-negative	No history of tuberculosis	Any history of tuberculosis
	(95% Cl; n/N)	(95% CI; n/N)	(95% CI; n/N)	(95% Cl; n/N)	(95% CI; n/N)
Xpert	83%	46%	98%	98%	98%
	(79-86; 383/462)	(37-55; 63/137)	(97–99; 960/977)	(97-99; 715/727)	(95-99; 244/249)
Xpert Ultra	88%	63%	96%	96%	93%
	(85-91; 408/462)	(54-71; 86/137)	(94–97; 934/977)	(95-98;701/727)	(89-96; 232/249)

Ultra = lower specificity \rightarrow lower PPV

Limits of molecular methods : Epidemiology and pre-test probability

Lesotho

Incidence : 724 / 100 000

	TB	No TB	
	1	99	
Xpert +	0.89 (1 x 89%)	0.99 (99 x 1%)	PPV = 47%
Xpert -	0.11 (1 x 11%)	98.01 (99 x 99%)	NPV = 99%

Genotypic diagnosis not efficient if used without clinical suspicion

Limits of molecular methods : Epidemiology and pre-test probability

France, high clinical suspicion

Incidence : 7.7 / 100 000

──→ 0.01%

HIV+ and homeless (<u>**RR 300**</u>), cough> 2 weeks (<u>**RR 4**</u>)

	ТВ	No TB	
	0.01*300*4 = 12	88	
Xpert +	10.68 (12 x 89%)	0.88 (88 x 1%)	PPV = <mark>92.4%</mark>
Xpert -	1.32 (12 x 11%)	87.12 (88 x 99%)	NPV = 98.5%

Genotypic diagnosis efficient if used following a clinical algorithm

Diagnosis of tuberculosis: Conclusion

 Genotypic diagnosis to be integrated in a global strategy (no angling fishing)

Diagnosis of drug resistance

A long time ago in a galaxy far, far away....

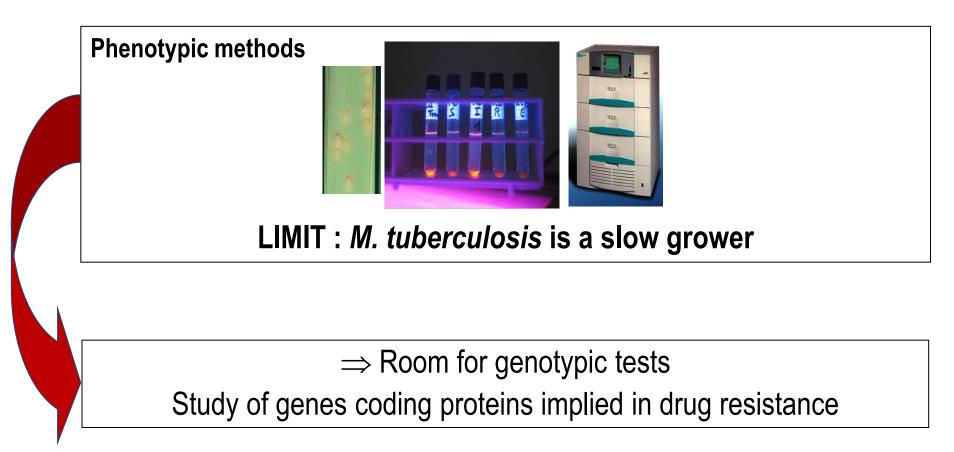
Revue de Tuberculose el de Pneumologie. T. 27, 1963, nº 2-3 (pp. 217-272).

MESURE DE LA SENSIBILITÉ DU BACILLE TUBERCULEUX AUX DROGUES ANTIBACILLAIRES

PAR LA MÉTHODE DES PROPORTIONS.

MÉTHODOLOGIE, CRITÈRES DE RÉSISTANCE, RÉSULTATS, INTERPRÉTATION

par

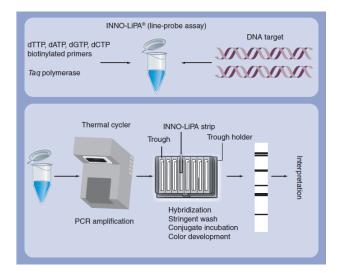

G. CANETTI, N. RIST et J. GROSSET (Institut Pasteur, Paris).

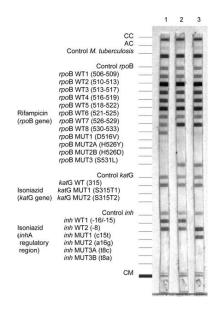
Reference for phenotypic diagnosis of resistance Adapted to liquid media in the 80s

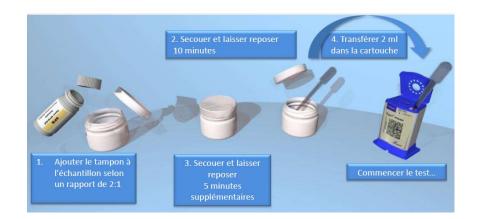
From phenotype to genotype

Genotypic diagnosis of drug resistance: the first study

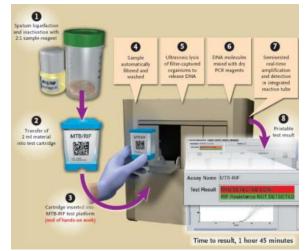
Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis


AMALIO TELENTI PAUL IMBODEN FRANCINE MARCHESI DOUGLAS LOWRIE STEWART COLE M. JOSEPH COLSTON LUKAS MATTER KURT SCHOPFER THOMAS BODMER


Lancet 1993; 341: 647-50.


- 122 clinical strains of *M. tuberculosis*
- *rpoB* Amplification/sequencing
- No mutation in 56 susceptible strains (sequence identical to H37Rv)
- 64/66 resistant strains with *rpoB* mutations

First demonstration of the possibility of a genotypic diagnosis of drug resistance Excellent prediction of resistance (64/64 mutated are resistant = 100%) Good prediction of susceptibility (56/58 non mutated are susceptible = 97%)


MTBDR, Xpert MTB/RIF

Genotypic tests accelerate the diagnosis of resistance

Drug	Gene	test	Sensitivity	Specificity	Performances
	P	MTBDR <i>plus</i>	98%	99%	
Rifampin	rpoB	Xpert MTB/RIF	94%	98%	Excellent
Isoniazid	inhA, katG	MTBDR <i>plus</i>	84%	99%	Good
Fluoroquinolones	gyrA, gyrB		83%	97%	Good
Amikacine			87%	99%	Good
Kanamycin	rrs, eis	MTBDR <i>sl</i>	67%	98%	Poor
Capreomycin			79%	95%	Good
Ethambutol	embB		68%	80%	Poor

Theron, 2014; Steingart 2013 ; Feng 2013 ; Ling 2008

Performances

-Excellent for rifampin—recommandation by HCSP 2015 for each new TB case

- Good for isoniazid, fluoroquinolones, amikacin, capreomycin

- Poor for kanamycin and ethambutol (improved in MTBDRs/V2)

Whole genome sequencing

- Makhado, Lancet ID, 2018
- *rpoB* mutation IIe491Phe not screened by commercial tests
- Restrospective analysis of 1823 isoniazid resistant and rifampin susceptible strains
- 277 strains randomly selected for study
- Deeplex-MycTB deep sequencing

— 37 with rpoB lle491Phe mutation = MDR

WGS detects low-level rifampin resistance better than current genotypic tests and than phenotypic DST Is WGS able to predict susceptibility?

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

Prediction of Suscepti

10 209 M. tu

Detection (%)

R

S

100-

95 90

80-

70

60-50-

> 40-30

20-10-

> 10 20 30

> > Prevalence

Negative Predictive Value (%)

The CRyPTIC

OCTOBER 11, 201

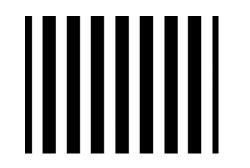
VOL. 379

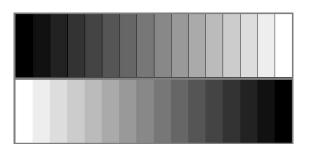
Beware of announcement!

<u>10 209 genomes</u> 7516 complete DST 5865 interpretable genomes 5250 concordant with DST =70% of strains with DST = **51%** of genomes

eptibility revalence

Proof of concept but not of feasibility in real life


Genotype/Phenotype correlation: fluoroquinolones


- Bernard, AAC 2015 : Prospective study of *gyrA* and *gyrB* mutations associated with fluoroquinolone resistance in *M. tuberculosis* strains
 - 605 strains received at the NRC between 2007 and 2012
 - Mutations gyrA : 78% associated with resistance
 - Mutations *gyrB* : 36% associated with resistance
- Aubry PLOS One 2014, Pantel, JAC 2016 :
 - GyrA A90G substitution confers quinolone <u>susceptibility</u>
- Maitre, JAC 2016 :
 - Some GyrB mutations phenotypically classified « S » reduce the *in* vivo activity of fluoroquinolones

Genotypic diagnosis sheds light on the variability of drug resistance levels

Diagnosis of resistances: Conclusion

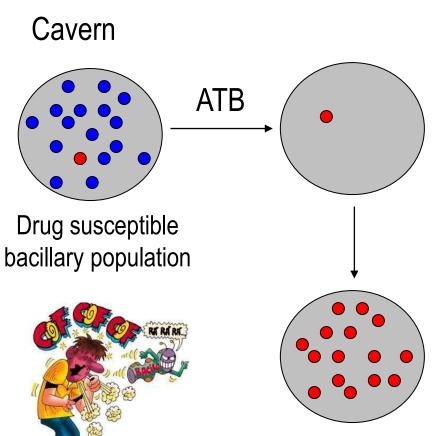
- Phenotypic tests remain the gold standard
- Genotype/Phenotype correlation
 - Work in progress
 - Including impact on treatment success
 - Go from black and white to shades of grey

General conclusion

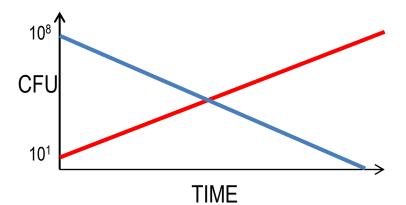
- Genotypic diagnosis accelerates diagnosis of tuberculosis and of drug resistance
- Know the limits for a good use in routine
- Tomorrow, WGS in routine?

🔦 Oana Dumitrescu

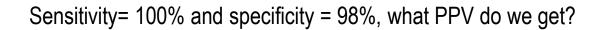
• Clinical use of whole genome sequencing for Mycobacterium tuberculosis in the workflow of TB diagnosis and control

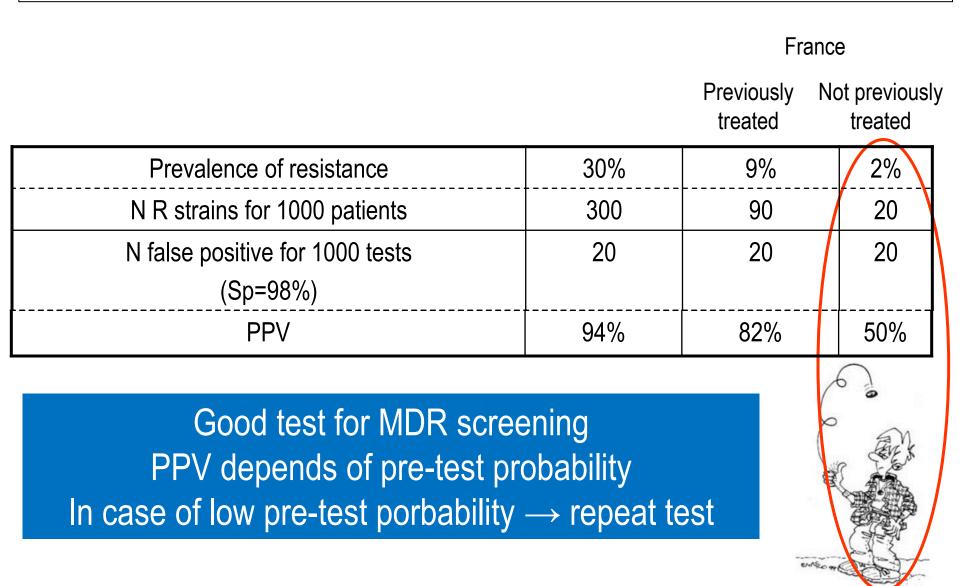

Isabelle Bonnet

 First evaluation in routine use of the combination of GeneLeadVIII to extract and detect Mycobacterium tuberculosis (Mtb) DNA and Deeplex-MycTB to predict drug resistance and TB transmission in less than 7 days from clinical samples


Mechanism of selection of drug resistant mutants

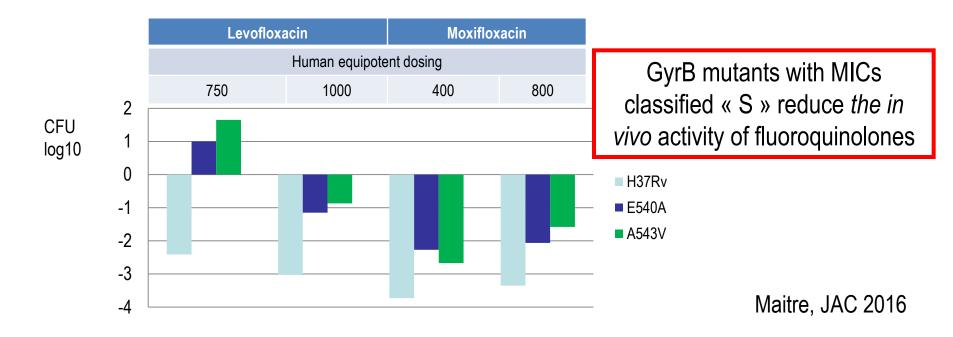
- Susceptible bacilli
- Drug resistant bacilli


Antibiotic	Concentration	Mutant proportion
pyrazinamide	100mg/L	10-5
isoniazide	0.2mg/L	10-6
streptomycin	2mg/L	10-6
rifampin	1mg/L	10-8
bedaquiline	0.5mg/L	10-8
linezolide	8mg/L	10-9



Drug resistant bacillary population

Is an *rpoB* mutation always predictive of drug resistance?



Fluoroquinolone low-level resistance

Genotype		Phenotype : MIC (µg/ml)		
GyrA	GyrB	levofloxacin	moxifloxacin	
WT	WT	≤ 0.25	≤ 0.25	
WT	E540A	0.5	0.5	
WT	A543V	1	0.5	

« Oficially» susceptible Critical Concentrations Levofloxacin = 1 mg/L Moxifloxacin = 0.5 mg/L

An example of the superiority of genotypic diagnosis over phenotypic diagnosis

Whole genome sequencing Papaventsis, CMI 2017 : literature review

Table 1

Drugs tested in the reports [4-7,12,14,22-35], genes associated with drug resistance and whole genome sequencing performance characteristics^a

Drug	No of studies	No of strains	Genes and other relevant Mycobacterium tuberculosis genome regions		Sensitivity, % (range)		Specificity, % (range)	
				Low	High	Low	High	
Rifampicin	19	6286	гроВ, гроА, гроС	89.2	100.0	66.7	100.0	
Isoniazid	19	5800	katG, inhA, oxyR-ahpC, fpbC, Rv1592C, Rv1772, Rv2242, fabD, fabG1, kasA, accD, oxyR, ndh, fadE24, nat, kasA, mabA, p_inhA, accD6, efpA	90.0	100.0	83.3	100.0	
Ethambutol	17	6059	embA, embB, embC, embR, iniA, iniB, iniC, Rv3124, manB, PPE49, rmlD, manB	71.4	100.0	15.4	95.8	
Pyrazinamide	13	6130	pncA, p_pncA, rpsA, panD	43.2	100.0	66.7	100.0	
Streptomycin	16	3953	rpsL, rrs, gidB	57.1	100.0	40.0	100.0	
Amikacin ^b	8	1471	rrs, eis, gidB, tlyA	80.0	100.0	50.0	100.0	
Capreomycin ^b	8	1553	rrs, eis, gidB, tlyA	60.7	100.0	13.7	100.0	
Kanamycin ^b	7	1289	rrs, eis, tlyA	75.0	100.0	0	100.0	
Injectable drugs ^d	4	518	rrs, eis, gidB, tlyA	37.0	100.0	50.0	100.0	
Ciprofloxacin	1	300	gyrA, gyrB	100.0	100.0	98.9	98.9	
Ofloxacin ^c	6	1564	gyrA, gyrB	80.0	100.0	80.0	100.0	
Moxifloxacin ^c	3	1318	gyrA, gyrB	60.0	90.9	68.7	100.0	
Levofloxacin ^c	-	_	gyrA, gyrB	—	_	_	_	
Gatifloxacin ^c	-	_	gyrA, gyrB	—	_	_	_	
Fluoroquinolones ^e	9	504	gyrA, gyrB	89.2	100.0	100.0	100.0	
Ethionamide	8	867	ethA, ethR, p_inhA, inhA, fabG1	16.7	100.0	50.0	100.0	
Prothionamide	3	502	p_ethA, ethA	40.0	100.0	29.4	80.0	
Rifabutin	1	2	rpoC	100.0	100.0	_	_	
Para-aminosalicylic acid ¹	1	11	thyA, folC, ribB	75.0	75.0	100.0	100.0	
Trimethoprim/sulfamethoxazole	1	2	dfrA	—	_	100.0	100.0	
Minocycline	1	2	whiB7	100.0	100.0	100.0	100.0	
Linezolid	2	5	Rrl, rplC	—	_	100.0	100.0	
Bedaquiline	_	_	Rv0678					
Clofazimine	_	_	Rv0678	_	_	_	_	

Heterogeneous performances Correlation with treatment issue?

PCR : evolution of performances

Reference	Methodology	Technology	Sensitivity among smear negative pulmonary specimens			
Sarmiento, JCM 2003	Meta-analysis	many	72%	Beware of announcement		
Boehme, NEJM 2010	Prospective study	Xpert MTB/RIF	72%			
Steingart, Cochrane 2014			67%	effects!		
Dorman, LID 2018	Prospective study	Xpert Ultra	63%			
		Xpert MTB/RIF	46%			
Chakravorty, Mbio 2017	Prospective and retrospective study	Xpert® MTB/RIF Ultra	79%			
Opota, JCM 2019	Prospective study	Xpert® MTB/RIF Ultra	92%			